Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores
نویسندگان
چکیده
Nanopores can be used to detect and analyse biomolecules. However, controlling the translocation speed of molecules through a pore is difficult, which limits the wider application of these sensors. Here, we show that low-power visible light can be used to control surface charge in solid-state nanopores and can influence the translocation dynamics of DNA and proteins. We find that laser light precisely focused at a nanopore can induce reversible negative surface charge densities as high as 1 C m(-2), and that the effect is tunable on submillisecond timescales by adjusting the photon density. By modulating the surface charge, we can control the amount of electroosmotic flow through the nanopore, which affects the speed of translocating biomolecules. In particular, a few milliwatts of green light can reduce the translocation speed of double-stranded DNA by more than an order of magnitude and the translocation speed of small globular proteins such as ubiquitin by more than two orders of magnitude. The laser light can also be used to unclog blocked pores. Finally, we discuss a mechanism to account for the observed optoelectronic phenomenon.
منابع مشابه
SDS-assisted protein transport through solid-state nanopores.
Using nanopores for single-molecule sequencing of proteins - similar to nanopore-based sequencing of DNA - faces multiple challenges, including unfolding of the complex tertiary structure of the proteins and enforcing their unidirectional translocation through nanopores. Here, we combine molecular dynamics (MD) simulations with single-molecule experiments to investigate the utility of SDS (Sodi...
متن کاملLow-frequency noise in solid-state nanopores.
Low-frequency ionic current noise in solid-state nanopores imposes a limitation on the time resolution achieved in translocation experiments. Recently, this 1/f noise was described as obeying Hooge's phenomenological relation, where the noise scales inversely with the number of charge carriers present. Here, we consider an alternative model in which the low-frequency noise originates from surfa...
متن کاملEnhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge.
Both protein and solid-state nanopores are under intense investigation for the analysis of nucleic acids. A crucial advantage of protein nanopores is that site-directed mutagenesis permits precise tuning of their properties. Here, by augmenting the internal positive charge within the alpha-hemolysin pore and varying its distribution, we increase the frequency of translocation of a 92-nt single-...
متن کاملLarge apparent electric size of solid-state nanopores due to spatially extended surface conduction.
Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based ...
متن کاملSensing Single Protein Molecules with Solid-State Nanopores
This chapter is focused on the development of experiments and theory of using solid-state nanopores for sensing single protein molecules in their native and unfolded states. Proteins serve diverse roles such as transport carriers, catalysts, molecular motors, cellular structural support, and others that make life possible. Because of these widely differing roles, proteins have an enormously div...
متن کامل